L-Methylfolate: A Vitamin for Your Monoamines

Stephen M. Stahl, M.D., Ph.D.

Issue: Synthesis of the monoamine neurotransmitters serotonin, dopamine, and norepinephrine is regulated by L-methylfolate, a derivate of the vitamin folate.

Folate (vitamin B₉) is well known as one of the 13 essential vitamins, but perhaps what is not as well known is that a derivative of folate—known as L-methylfolate—is actually the active form of the vitamin.¹⁻³ One of L-methylfolate’s critical roles is to regulate the synthesis of the 3 monoamine neurotransmitters serotonin, dopamine, and norepinephrine.¹⁻⁶

What Is L-Methylfolate?

Folic acid is the synthetic form of the vitamin folate and is present in artificially enriched foods such as bread and in over-the-counter multivitamins as well as in prescription vitamins.³ Dihydrofolate is the dietary form of folate, derived from green vegetables, yeast, egg yolk, liver, and kidney.³ A key regulatory enzyme known as methylene tetrahydrofolate reductase or MTHFR (Figure 1)¹⁻⁷ converts folic acid or dihydrofolate to a usable form in the body, L-methylfolate, that can then pass through the blood-brain barrier where it modulates the formation of the monoamines serotonin, norepinephrine, and dopamine.¹⁻⁷

How Does L-Methylfolate Regulate the Synthesis of Monoamines?

L-Methylfolate acts to modulate the synthesis of monoamines in a 3-step process (Figure 2). First, L-methylfolate assists in the formation of a critical cofactor, known as tetrahydrobiopterin, or BH₄ (Figure 2A), for the synthesis of monoamines.⁴⁻⁶ Second, BH₄ activates the rate-limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase for the synthesis of monoamines.⁴⁻⁶ Note that when these enzymes lack BH₄ (shown as an empty “4” in the blue tyrosine hydroxylase and tryptophan hydroxylase enzymes) BH₄ activates the 2 enzymes to synthesize the 3 monoamines.

Figure 1. Synthesis of L-Methylfolate From Folate

Abbreviations: C = carbon, H = hydrogen, MTHFR = methylene tetrahydrofolate reductase.

Figure 2. Regulation of Monoamine Synthesis by L-Methylfolate

A. L-Methylfolate Assists in the Formation of Tetrahydrobiopterin (BH₄)

B. Tyrosine Hydroxylase and Tryptophan Hydroxylase Are Inactive in the Absence of BH₄

C. BH₄ Activates the 2 Enzymes to Synthesize the 3 Monoamines

J Clin Psychiatry 69:9, September 2008
PSYCHIATRIST.COM 1352
Therapeutic Implications?

One practical application of the central action of L-methylfolate may be for depressed patients who have inadequate monoamine neurotransmitter synthesis, especially if caused by an actual or functional deficiency in brain L-methylfolate (Table 1). In such cases, administration of L-methylfolate could theoretically boost monoamine synthesis to the necessary levels and either treat depression or boost the therapeutic action of antidepressants dependent upon adequate levels of monoamines.

So, who might be the best candidates to receive L-methylfolate? Research is still trying to answer this question, but the current evidence suggests that the best candidates for L-methylfolate treatment might be depressed patients who have documented low levels of folate and its active metabolites, including L-methylfolate, and who fail to respond to treatment with a standard antidepressant. Investigators are also determining whether those at risk for low L-methylfolate levels, such as those who have certain comitant illnesses, have certain genetic risk factors for low L-methylfolate levels due to inheritance of low MTHFR enzyme activity, or are taking certain drugs that interfere with L-methylfolate formation (Table 1), might also be responsive to antidepressant augmentation with L-methylfolate.

Summary

L-Methylfolate modulates the synthesis of the monoamines serotonin, norepinephrine, and dopamine. Some depressed patients may have their disorder or their lack of response to an antidepressant linked to low levels of folate and L-methylfolate. Research is currently working to establish which patients with depression would be the best candidates for L-methylfolate treatment.

References

BRAINSTORMS is a section of The Journal of Clinical Psychiatry aimed at providing updates of novel concepts emerging from the neurosciences that have relevance to the practicing psychiatrist.

From the Neuroscience Education Institute in Carlsbad, Calif, and the Department of Psychiatry at the University of California San Diego.

Reprint requests to: Stephen M. Stahl, M.D., Ph.D., Editor, BRAINSTORMS, Neuroscience Education Institute, 1938 Palomar Point Way, Ste. 111, Carlsbad, CA 92009.